The K-theory of symplectic quotients
نویسندگان
چکیده
Let G be a compact connected Lie group, and (M,ω) a compact Hamiltonian Gspace with moment map μ. We give a surjectivity result which expresses the K-theory of the symplectic quotient M//G in terms of the equivariant K-theory of the original manifold M , under certain technical conditions on μ. This result is a natural K-theoretic analogue of the Kirwan surjectivity theorem in symplectic geometry. In the process, we prove that the equivariant K-theory Euler class of a G-bundle is not a zerodivisor, provided that an S subgroup fixes precisely the zero section. This is the K-theoretic version of a lemma due to Atiyah and Bott, which plays a fundamental role in the symplectic geometry of Hamiltonian G-spaces.
منابع مشابه
Symplectic implosion and non-reductive quotients
There is a close relationship between Mumford’s geometric invariant theory (GIT) in (complex) algebraic geometry and the process of reduction in symplectic geometry. GIT was developed to construct quotients of algebraic varieties by reductive group actions and thus to construct and study moduli spaces [28, 29]. When a moduli space (or a compactification of a moduli space) over C can be construc...
متن کاملThe K-theory of Abelian Symplectic Quotients
Let T be a compact torus and (M,ω) a Hamiltonian T -space. In a previous paper, the authors showed that the T -equivariant K-theory of the manifold M surjects onto the ordinary integral K-theory of the symplectic quotient M//T , under certain technical conditions on the moment map. In this paper, we use equivariant Morse theory to give a method for computing theK-theory of M//T by obtaining an ...
متن کاملModuli of Higgs Bundles
2 Local symplectic, complex and Kähler geometry: a quick review 10 2.1 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Symplectic quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Complex manifolds . . . . . . . . . . . . . . ....
متن کاملTransversality theory, cobordisms, and invariants of symplectic quotients
This paper gives methods for understanding invariants of symplectic quotients. The symplectic quotients that we consider are compact symplectic manifolds (or more generally orbifolds), which arise as the symplectic quotients of a symplectic manifold by a compact torus. A companion paper [23] examines symplectic quotients by a nonabelian group, showing how to reduce to the maximal torus. Through...
متن کاملThe Intersection Cohomology of Singular Symplectic Quotients
We give a general procedure for the calculation of the intersection Poincaré polynomial of the symplectic quotient M/K, of a symplectic manifold M by a hamiltonian group action of a compact Lie group K. The procedure mirrors that used by Kirwan for the calculation of the intersection Poincaré polynomial of a geometric invariant theory quotient of a nonsingular complex projective variety. That i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006